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Summary

The technique of boxcar variances and covariances is
used to examine NCAR Electra data from FASINEX.
This tachnique has been developed to examine changes
in turbulent fluxes near an SST fronl. The results
demonstrate the influence of the SST front on the
MABL. Data shown here are for February 16, 1986,
when the winds blew from over cold water to warm. The
front directly produced horizontal variability in the turbu-
lence. The front also induced a secondary circulation
which further modified the turbulence.
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Boxcar Covariances

The technique follows Crescenti (1988). Let the boxcar
average of any measured variable S(t) be defined by
T
<S>(t) = (1/T) f S(t+t") dt’ (1)

12

where T is the length of the boxcar. Then we can define

the boxcar covariance of S and R by

COV.{S,R) =
(am f [S(t+1) - <S>(B)] [R(t+t) - <R>(Y)] d.
e @
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Notae that the arguments of <S> and <R> are functions
of t and therefore that the covariance is just the covari-
ance which would be obtained by breaking the data into
blocks of length T. This is not the value obtained by
finding S' and R' using a high pass running mean filter
and then taking the boxcar average of their product.
That covariance would have 1+’ as the argument for
<S> and <R> above. Further let the correlation between
S and R be given by

COR.,(S.R) =
COV.(S,R) [ COV.(S,S) COV.(R,R)|*.
()

Wae are then abile to define the detrended covariance of
SandRas

COV(S,R) = COV.(S,R)
[1-COR,(S,) COR.(R,t)/ COR.(SR) ].
(4)
The above is the same value obtained by taking a block
of data centered at time t and computing the covariance
between linearly detrended S and R. A detrended corre-
lation can also be defined from COV. All of the figures

shown here use detrended covariances and correlations.
Further let R~ denote the Hilbert transform of R and
define the boxcar coherence as

COH(S,R) = [ COV(S,R) + COV(S,R“)’ | )]
Finally let the boxcar phase angle be

Phase(S,R) = Tan™' [ COV(S,R) / COV(S.R ) |
(6)

Results

The Data: All data shown are from the Frontal Air-Sea
Interaction Experiment (FASINEX, see Stage and Weller,
1985, 1986). These data were obtained by the NCAR
Electra flying at 35 m elevation on February 16, 1986.

On the fiight leg shown the mean winds were 7.8 nvs
from 31 deg--nearly perpendicular to the SST front from
over cold to warm water (right to left in these plots).
Other flight legs on this same day show similar features.

Following Crescenti (1988), all boxcars shown here use
60 s (6 km) averages. Horizontal wind components have

been rotated so that U is along the mean wind for the leg.

Regions in the flow: The SST front was very sharp and
was located between 60 and 64 km. The total magnitude
of the front was 2.5°C. Based on examination of all the
statistics, the flow can be divided into 5 regions as fol-
lows:

R1: Over the cold water upwind (north) of the front.

R2: A dry downdraft region ~20 km wide over and just
upwind of the front.

R3: A ~30 km wide region of enhanced convection just
downwind (south) of the front believed to represent a
secondary circulation cell.

R4: A narrow (~10 km wide) region at the downwind
edge of R3 believed to be the boundary of the secondary
circulation cell.

R5: Flow over warm water farther downwind.
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not COR or COH. Stress is surprisingly simitar in A1 and
R3.

Stress, COR, and COH are near zero in R4. It is this
fealure which led us to identify R4 as a dislinct region
rather than simply the boundary between R3 and R5.
Both U and W have high variances in R4. Wa do not yet
understand the mechanism producing low stress in R4,
but believe that it is associated with the boundary of the
secondary cell in R3.
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